Convolutional Neural Networks with Intra-Layer Recurrent Connections for Scene Labeling

نویسندگان

  • Ming Liang
  • Xiaolin Hu
  • Bo Zhang
چکیده

Scene labeling is a challenging computer vision task. It requires the use of both local discriminative features and global context information. We adopt a deep recurrent convolutional neural network (RCNN) for this task, which is originally proposed for object recognition. Different from traditional convolutional neural networks (CNN), this model has intra-layer recurrent connections in the convolutional layers. Therefore each convolutional layer becomes a two-dimensional recurrent neural network. The units receive constant feed-forward inputs from the previous layer and recurrent inputs from their neighborhoods. While recurrent iterations proceed, the region of context captured by each unit expands. In this way, feature extraction and context modulation are seamlessly integrated, which is different from typical methods that entail separate modules for the two steps. To further utilize the context, a multi-scale RCNN is proposed. Over two benchmark datasets, Standford Background and Sift Flow, the model outperforms many state-of-the-art models in accuracy and efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense Recurrent Neural Networks for Scene Labeling

Recently recurrent neural networks (RNNs) have demonstrated the ability to improve scene labeling through capturing long-range dependencies among image units. In this paper, we propose dense RNNs for scene labeling by exploring various long-range semantic dependencies among image units. In comparison with existing RNN based approaches, our dense RNNs are able to capture richer contextual depend...

متن کامل

Multi-level Contextual RNNs with Attention Model for Scene Labeling

Context in image is crucial for scene labeling while existing methods only exploit local context generated from a small surrounding area of an image patch or a pixel, by contrast long-range and global contextual information is ignored. To handle this issue, we in this work propose a novel approach for scene labeling by exploring multi-level contextual recurrent neural networks (ML-CRNNs). Speci...

متن کامل

Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic features for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Cla...

متن کامل

Deep contextual language understanding in spoken dialogue systems

We describe a unified multi-turn multi-task spoken language understanding (SLU) solution capable of handling multiple context sensitive classification (intent determination) and sequence labeling (slot filling) tasks simultaneously. The proposed architecture is based on recurrent convolutional neural networks (RCNN) with shared feature layers and globally normalized sequence modeling components...

متن کامل

Recurrent Convolutional Neural Networks for Scene Labeling

The goal of the scene labeling task is to assign a class label to each pixel in an image. To ensure a good visual coherence and a high class accuracy, it is essential for a model to capture long range (pixel) label dependencies in images. In a feed-forward architecture, this can be achieved simply by considering a sufficiently large input context patch, around each pixel to be labeled. We propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015